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A differentially protected C-3 N-sulfinyl, C-2 N,N-(diphenylmethylene) 2,3-diamino ester was employed
in the synthesis of the amino piperidine (2S,3R)-(�)-epi-CP-99,994. Key steps in the synthesis included
the chemoselective hydrolysis of the C-2 N,N-(diphenylmethylene) group and its reprotection as a dib-
enzylamino group.
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Optically active syn- and anti-2,3-diamino acids are an impor-
tant class of non-protein amino acids. They are key components
of natural products including peptide antibiotics, antifungal
agents, as well as other medicinally valuable compounds.1 They
are also useful precursors of chiral 1,2-diamines (vicinal diamines)
which are found in a broad variety of natural products, are useful
ligands for catalysis, and are building blocks for asymmetric syn-
theses.2 In 2004 we reported the enantioselective synthesis of
syn-2,3-diamino esters via the addition of the enolate of ethyl (dib-
enzylamino) acetate (1) to sulfinimines (N-sulfinyl imines).3,4 For
example, the lithium E-enolate of 1 was added to sulfinimine
(S)-(+)-2 to give syn-2,3-diamino ester (+)-3 in 68% yield of the ma-
jor diastereoisomer (Fig. 1).4 In 2007 we disclosed that the Z-lith-
ium enolate of N,N-(diphenylmethylene)glycine ethyl ester (4), in
the presence of water, adds to (S)-(+)-2 to give the anti-2,3-diamino
ester (�)-5 in high dr and in excellent yield.5 In the absence of
water, an excess of this enolate afforded the syn-2,3-diamine es-
ters.5 Our asymmetric synthesis of the novel tetracyclic marine
antitumor agent (�)-agelastatin A (5)6 and the potent neurokinin
substance P receptor antagonist (2S,3S)-(+)-CP-99,994 (6)7 relied
on the fact that the two amino groups in the syn-2,3-diamino es-
ters were differentially protected.8 A key step in these syntheses
was the selective removal of the N-sulfinyl group. We describe
here an efficient asymmetric synthesis of (2S,3R)-(�)-epi-CP-
99,994 (8) from anti-2,3-diamino ester (�)-5.9

In considering the synthesis of (�)-8 from (�)-5 we envisioned
a route similar to that used in the preparation of (+)-7, namely the
construction of a diamino diene and using ring closing metathesis
(RCM) to form the piperidine ring.7 However this requires selective
hydrolysis of the N,N-(diphenylmethylene)amino group in (�)-5
without disturbing the N-sulfinylamino group. Initial attempts to
ll rights reserved.
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accomplish this with TFA/MeOH or HCl/H2O under various reaction
conditions failed, always resulting in removal of both protecting
groups. Recently, Viso and co-workers reported that in the hydro-
lysis of N-sulfinylimidazolidines with H3PO4 the sulfinamide group
was left intact.10 They attributed the remarkable chemoselectivity
of this acid to the low nucleophilicity of the phosphate counterion.

Significantly, treatment of (�)-5 with 4 equiv of H3PO4 (85 wt %
in H2O) in THF at 0 �C for 4 h produced an 86% isolated yield of the
C-2 deprotected amine (SS,2S,3S)-(+)-9 (Scheme 1). While reaction
of (+)-9 with benzyl bromide gave (+)-10 in excellent yield,
H
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Figure 1. Applications of N-sulfinyl 2,3-diamino esters.
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attempts to add a second N-benzyl group resulted in complex mix-
tures of products. In an effort to prepare a diamine in which the C-3
amino group could be selectivity allylated, (+)-10 was hydrolyzed
(TFA–MeOH) and urea (+)-11 was prepared in 83% yield using ex-
cess 1,1-carbonyldiimidazole/Et3N. Allylation with 8 equiv of allyl
bromide/KHMDS afforded (�)-12 that on reduction with LAH gave
alcohol (�)-13 all in good yields (Scheme 1). Next, (�)-13 was oxi-
dized to the aldehyde with Dess–Martin periodinane (DMP). The
aldehyde was treated with Na2S2O3, dried (Na2SO4), and added to
a �78 �C THF solution of the Wittig reagent (Ph3PCH3Br/n-BuLi)
to give the diamino diene (�)-14 in 48% isolated yield. Unfortu-
nately, all attempts to hydrolyze the urea under acid (5 N HCl,
5 N H2SO4) or base (NaOH, Ba(OH)2) conditions failed, and starting
material was recovered under all conditions.

For this reason we returned to (+)-10 in hopes of finding condi-
tions for the chemoselective modification of one of the amino
groups. Reasoning that the N-benzyl-protected amine was a harder
nucleophile than the N-sulfinyl amine, (+)-10 was treated with
benzoyl chloride, a hard Lewis acid. Remarkably, (�)-15 was selec-
tively formed in 70% yield (Scheme 2). Next, reduction of (�)-15
with 4 equiv of LAH at �78 �C to rt accomplished the reduction
of both the amide and ester groups to give the N,N-dibenzylamino
alcohol (+)-16 in 84% yield. Oxidation of the alcohol with DMP gave
the aldehyde, which quickly decomposed on isolation. For this rea-
son the crude aldehyde was treated with Na2S2O3, dried (Na2SO4),
and immediately used in the next step. The Kocienski-modified Ju-
lia olefination11 using phenyltetrazole methyl sulfone (1.5 equiv)
and KHMDS (3.6 equiv) at �20 �C gave (+)-17 in 70% yield for the
two steps (Scheme 3). The sulfinyl group was removed (TFA–
MeOH), replaced with a Boc group, and (+)-18 was allylated with
excess allyl bromide/KHMDS at 0 �C to give the diamino diene
(+)-19 in 74% yield. This highly aminated diene smoothly under-
went RCM with the Grubbs-Hoveyda catalyst 2012 to give the ami-
no tetrahydropyridine (+)-21 in 94% isolated yield. 1,2,4,6-
Tetrahydropyridines such as (+)-21 are useful chiral building
blocks for the synthesis of natural products because of the many
methods available for ring functionalization of the C–C double
bond.13

The conversion of (+)-21 into the target (2S,3R)-(�)-epi-CP-
99,994 (8) followed the procedure that we used to prepare (+)-
CP-99,994 (7).7 The double bond in the key tetrahydropyridine
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intermediate (+)-21 was reduced (Pt–C, H2) to give (+)-22. Depro-
tection (Pd(OH)2–C, H2) of the dibenzyl amino group gave (+)-23
which was subjected to a one-pot reductive amination reaction
with o-anisaldehyde/NaB(OAc)3H affording (+)-24 in 98% isolated
yield (Scheme 3).14 Finally, removal of the N-Boc group (HCl–diox-
ane) gave (2S,3R)-(�)-epi-CP-99,994 (8) in 80% yield as the hydro-
chloride salt.15

In summary, a new synthesis of (2S,3R)-(�)-epi-CP-99,994 (8),
the anti-analog of the potent neurokinin substance P receptor
antagonist (2S,3S)-(+)-CP-99,994 (8) has been achieved. Highlights
of this synthesis include the chemoselective hydrolysis of the N,N-
(diphenylmethylene)-protected C-2 amino group in (�)-5 to give
N-sulfinyl diamino ester (�)-9 and the chemoselective N-benzoyl-
ation of the C-2 N-benzyl group in (+)-10 to give (�)-15.
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